Jump to content
  • Welcome to SEFP!


    Welcome to our community forums, full of great discussions about Structural Engineering. Please register to become a part of our thriving group or login if you are already registered.

Shehzad Ahmad Khan Gigyani

Final year project

Recommended Posts

I am bachelor student and here i am for some quality advice for my final year project.
I am interested in structure and i want to do project on Design, Seismic and dynamic analysis of multi storey buildng using etabs and sap2000.And can i publish a paper on my project or give me some other good idea or best topic related to structural projects
Kindly guide me   

Share this post

Link to post
Share on other sites

Tip1: Being ambitious is good and appreciated. But dont go so deeper and end up having an unyielding tough topic making your life harder. Think big, start small. Okay?

For topics in bachelors, let me direct to some; have you thought about these? My suggestion is to think of yourself as the 'future leader' of structural engineering...not just a technical number cruncher.... :)

1. Highlighting the ordinary house construction mistakes and tackling them? like putting more steel always isnt good in a beam, like snap-failure of concrete floors killing people in factories, mosques and homes in pakistan? A sort of guide for public? Could go on publishing in media as well afterwards.

2. Environment? Value engineering/whole life cost, structural engineering solutions in pakistan to protect environment from construction effects??? What are the shortcoming.

3. Rehab of ordinary public homes to protect for future earthquakes?

4. Study of moderately mid to high rise or complex shape buildings that are dynamically sensitive. For example you could consider an important national building (faisal mosque ?) whose shape is very sensitive to dynamic loading (wind/seismic) and how the design was done and what are the your suggestions to improve? or the lessons learnt for future buildings of same kind. 

5. 3d printing, what are the effects and how and at what scale it could be implemented in pak and what type of sector can use it? can we make better and cheap and environmentally friendly homes from it? if not now then may be in future? 

6. structural health monitoring?

7. Preparing tables for beams, slabs that shows economy vs span for ordinary construction in pk? Could be distributed as served as a guide in design offices. For example google 'concrete center' span tables.

8. Structures and Terrorists! How would you protect important buildings in Pakistan from terrorist threat? Evacuation plans and structural engineering, blast resistant, progressive collapse, what material is better? Implementation plan? What are more sensitive national buildings?



Share this post

Link to post
Share on other sites

u can also do project on effect on the strength of structural members by the carbonation increasing content or how to monitor, mitigate existing structures like bridges etc. also give mentainance model for them.

Share this post

Link to post
Share on other sites

in country like Pakistan after several years we will look forward in repairing and mentainance instead of new construction. bcz some structures like bridges are our national assests. we have to work that how to upgrade then in different respects like shear , flexure, torsion. we are also facing earthquakes and after shocks. u can work on it that how to convert ordinary building into earthquake resistance by keeping in view our economy.

Share this post

Link to post
Share on other sites

Take a random building 3 or more than 3 storey and analyse and design it with IBC ( Response Spectrum ) and UBC code using Etabs or SAP2000 and compere them. you can also apply Pushover for both and you can easily publish a paper. 

Best of Luck 

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Our picks

    • Hi guys just to discuss with you my understanding of crack widths in Environmental structures according to ACI. 



      Normal structures



      1. ACI 318-95 based on statistical method of Gergely & Lutz 1968 limits Z based on exposure. We are calculating crack widths here. (Normal structures)


      2. ACI 318-99 proposed limiting the spacing and removed actually calculating the width and also removed the exposure conditions. For example for beams and one-way slabs s (in) = 540/fs -2.5cc or in other words limiting the fs=0.6fy  (For normal structures)


      3. ACI 224R-01 references method 1 and 2 above and 3 european codes.

      The most confusing part is the table in which Nawy suggests 0.1mm crack width for water-tight structures. The whole document is for normal structures except this line. And people are following this line and refer to this document for water tight structures. I mean its just a suggestion and by the way this method 1 is obsolete now since ACI 318-99 (see point 2 above).



      Water tight structures



      1. ACI 318-08 states clearly that for watertight structures ACI 350-06 codes should be used. 


      2. ACI 224.4R-13 also specifically states that for watertight structures walls in section 7.4, we should use ACI 350-06. 


      3. ACI 350-06 for water tight structures does not recommend calculating a number for crack width but rather limiting max steel stress in bars to be 20k ksi or fs=0.33fy for normal conditions.



      To sum it up, 


      Philosophy of crack width control is not to calculate probable crack widths but to limit the max stress in steel bars.


      For normal structures: fs=0.6fy and for water tight structures fs=0.33fy
      • 1 reply
    • Hi

      I want to know the use of diaphragms in etabs. i discus many people who are use etabs but i can't get justified answer about the application of etabs.

      I read the Technical reference  of  Etabs, where they write about Diaphragms. i get two type of diaphragms (plate or shell and joint or beam). 

      My question.

      1. When do i use Shell diaphragms (if floor present ) 

      2.When do i use joint diaphragms ( grade beam level where no slab are provide) 


      NB: Diaphragms use to transfer the lateral load to the resisting element ( frame such as column. beam,shear wall) 
      • 2 replies
    • *SEFP Consistent Design*<br style="color:#272a34">*Pile Design*<br style="color:#272a34">*Doc No: 10-00-CD-0005*<br style="color:#272a34">*Date: Nov 21, 2017*<br style="color:#272a34">

      This article is intended to cover design of piles using Ultimate Limit State (ULS) method. The use of ULS method is fairly new for geotechnical design (last decade). The method is being used in multiple countries now (Canada, Australia etc). The following items shall be discussed:


      Geotechnical Design of Piles (Compression Loads, Tension Loads and Lateral Loads)

      Structural Design of Piles (Covering both Concrete and Steel)

      Connection of Pile with the foundation (Covering both Concrete and Steel)

      Pile Group Settlement

      Things to consider


      1. Overview

      Piles provide a suitable load path to transfer super-structure loads to foundation where shallow foundation are not suitable - this can be due to a number of reasons like existing space constraints or suitable soil strata is not present immediately below structure. Other uses can be to meet design requirements like to have reduced settlement etc.

      This article shall cover the use of straight shaft cast-in-place concrete piles and straight shaft driven steel pipe piles. There are a number of additional piles types like belled concrete piles, precast concrete piles, screw / helical steel piles etc but the discussion to choose a suitable pile type is not in the intended scope of this article. The article is intended  to discuss design requirements for straight shaft piles only (both concrete and steel) . The aforementioned topic about pile selection is a very diverse subject and requires a separate discussion on its own.

      Click on the link to read the full article.
      • 9 replies
    • I am suppose to design a pile foundation for a machine weighing approximately 50 tons and with an operational loading of 100 tons. 
      I ll appreciate your help in terms of guidance & provision of notes...  
      Thank you..
      • 36 replies
    • Material behavior can be idealized as consisting of an 'elastic' domain and a 'plastic' domain. For almost 200 years, structural design has been
      based on an elastic theory which assumes that structures display a linear response throughout their loading history, ignoring the post-yielding
      stage of behavior. Current design practice for reinforced concrete structures is a curious blend of elastic analysis to compute forces and moments, plasticity theory to proportion cross-sections for the moment and axial, load, and empirical mumbo-jumbo to proportion members for shear.


      From the book "Design of Concrete Structures with Stress Fields" by A. Muttoni,  J. Schwartz and  B.Thurliman.

      • 0 replies
    • Dear Fellow Researchers, Academicians, and research students,


      NED University of Engineering & Technology in collaboration with Institution of Engineers Pakistan (IEP) is organizing 9th International Civil Engineering Conference (ICEC 2017) on December 22-23, 2017 at Karachi, Pakistan.

       The congress details are available at its website www.neduet.edu.pk/icec

       Also attached is congress flyer for information and dissemination among your peers.

       Abstracts submission deadline has been extended till October 31, 2017.

      Please click on the link to see the full description.
      • 0 replies
    • AoA all,

      Is it mandatory to do column concreting upto the soffit of the beam in a single pour ?

      What code says about the construction/cold joint location in column ?

      Majority of the contractors are pouring the column concrete upto the soffit of the beam (full height of the column), some contractors leave the column height about 9" to 12" below the beam level and then fill this 9" to 12" column height with the beams & slab concreting. On one site column concreting was stopped at the mid height and the remaining half was filled on the next day.



      • 5 replies
    • AOA 

      i am facing problems in shear wall design .what are the pier and spandral ?what will be the difference when we assign pier or spandral? without assigning these the shear wall design is incomplete .

      i am taking about etabsv16

      someone have document about shear wall design plz provide it 

      thank you

      • 10 replies
    • Salam Members,

      Congratulations to Engineers, PEC has become full signatory of Washington Accord, what are the benefits to Pakistani engineers for this agreement. 




      • 3 replies
    • Please clarify the following confusions one by one:-


      1. If we run P-delta analysis in ETABS, then should we ignore stiffness property modifiers for beams and columns? I have heard that if we perform P-delta analysis and apply stiffness modifiers at the same time then the moment magnification process is doubled...?


      2. ETABS considers selenderness of a column by applying moment magnification factors. If we run P-delta analysis also, does it mean that the selenderness of column is being over-estimated? I mean once the moments are magnified in P-delta analysis process and again through moment magnification process?


      Please help me understand the software myth and clarify above confusions.
      • 1 reply
  • Recently Browsing   0 members

    No registered users viewing this page.


Important Information

By using this site, you agree to our Terms of Use and Guidelines.