Jump to content
  • Welcome to SEFP!

    Welcome!

    Welcome to our community forums, full of great discussions about Structural Engineering. Please register to become a part of our thriving group or login if you are already registered.

Recommended Posts

Salam

Dr.Amjad Saqib!!! I love this person for his efforts to reduce the poverty with dignity. Founder of Akhuwat Foundation speaks from his heart,wondefully . Listen to his speech at TEDx

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Our picks

    • *SEFP Consistent Design*<br style="color:#272a34">*Pile Design*<br style="color:#272a34">*Doc No: 10-00-CD-0005*<br style="color:#272a34">*Date: Nov 21, 2017*<br style="color:#272a34">
       

      This article is intended to cover design of piles using Ultimate Limit State (ULS) method. The use of ULS method is fairly new for geotechnical design (last decade). The method is being used in multiple countries now (Canada, Australia etc). The following items shall be discussed:

      Overview


      Geotechnical Design of Piles (Compression Loads, Tension Loads and Lateral Loads)


      Structural Design of Piles (Covering both Concrete and Steel)


      Connection of Pile with the foundation (Covering both Concrete and Steel)


      Pile Group Settlement


      Things to consider



       

      1. Overview

      Piles provide a suitable load path to transfer super-structure loads to foundation where shallow foundation are not suitable - this can be due to a number of reasons like existing space constraints or suitable soil strata is not present immediately below structure. Other uses can be to meet design requirements like to have reduced settlement etc.

      This article shall cover the use of straight shaft cast-in-place concrete piles and straight shaft driven steel pipe piles. There are a number of additional piles types like belled concrete piles, precast concrete piles, screw / helical steel piles etc but the discussion to choose a suitable pile type is not in the intended scope of this article. The article is intended  to discuss design requirements for straight shaft piles only (both concrete and steel) . The aforementioned topic about pile selection is a very diverse subject and requires a separate discussion on its own.

      Click on the link to read the full article.
       
      • 9 replies
    • I am suppose to design a pile foundation for a machine weighing approximately 50 tons and with an operational loading of 100 tons. 
      I ll appreciate your help in terms of guidance & provision of notes...  
       
      Thank you..
      • 36 replies
    • Material behavior can be idealized as consisting of an 'elastic' domain and a 'plastic' domain. For almost 200 years, structural design has been
      based on an elastic theory which assumes that structures display a linear response throughout their loading history, ignoring the post-yielding
      stage of behavior. Current design practice for reinforced concrete structures is a curious blend of elastic analysis to compute forces and moments, plasticity theory to proportion cross-sections for the moment and axial, load, and empirical mumbo-jumbo to proportion members for shear.

       

      From the book "Design of Concrete Structures with Stress Fields" by A. Muttoni,  J. Schwartz and  B.Thurliman.

       
      • 0 replies
    • Dear Fellow Researchers, Academicians, and research students,

       

      NED University of Engineering & Technology in collaboration with Institution of Engineers Pakistan (IEP) is organizing 9th International Civil Engineering Conference (ICEC 2017) on December 22-23, 2017 at Karachi, Pakistan.

       The congress details are available at its website www.neduet.edu.pk/icec

       Also attached is congress flyer for information and dissemination among your peers.

       Abstracts submission deadline has been extended till October 31, 2017.

      Please click on the link to see the full description.
      • 0 replies
    • AoA all,

      Is it mandatory to do column concreting upto the soffit of the beam in a single pour ?

      What code says about the construction/cold joint location in column ?

      Majority of the contractors are pouring the column concrete upto the soffit of the beam (full height of the column), some contractors leave the column height about 9" to 12" below the beam level and then fill this 9" to 12" column height with the beams & slab concreting. On one site column concreting was stopped at the mid height and the remaining half was filled on the next day.

      Thanks

       

       
      • 5 replies
    • AOA 

      i am facing problems in shear wall design .what are the pier and spandral ?what will be the difference when we assign pier or spandral? without assigning these the shear wall design is incomplete .

      i am taking about etabsv16

      someone have document about shear wall design plz provide it 

      thank you

       
      • 9 replies
    • Salam Members,

      Congratulations to Engineers, PEC has become full signatory of Washington Accord, what are the benefits to Pakistani engineers for this agreement. 

       

      Regards   

       

       
      • 3 replies
    • Please clarify the following confusions one by one:-

       

      1. If we run P-delta analysis in ETABS, then should we ignore stiffness property modifiers for beams and columns? I have heard that if we perform P-delta analysis and apply stiffness modifiers at the same time then the moment magnification process is doubled...?

       

      2. ETABS considers selenderness of a column by applying moment magnification factors. If we run P-delta analysis also, does it mean that the selenderness of column is being over-estimated? I mean once the moments are magnified in P-delta analysis process and again through moment magnification process?

       

      Please help me understand the software myth and clarify above confusions.
      • 1 reply
    • Assalam o alaikum.
      According to ACI 12.5.2,
      development length for fc' = 3000, fy=60000, for normal weight concrete and epoxy less reinforcement, The required development length comes out to be
      for #3 = 8.2 inch
      for #4 = 10.95 inch
      for #6 = 16.42 inch
      for #8 = 21.9 inch
       
      And if in my case, ACI 12.5.3 is not fulfilled, it means now i have to provide ldh as mentioned above. ldh is STRAIGHT EMBEDMENT LENGTH + RADIUS OF BEND + ONE BAR DIAMETER as shown in figure attached. Now my question is, if in my case, main reinforcement of beam is of #6 and #4, minimum column size required will be 18 inch and 12 inch respectively. Lets say by any means, i can not select #4, #3 bars and size of column where bars are to be terminated is 12 inch, how to fullfil this development length???
      • 11 replies
    • Dear all,

      I am trying to design shearwalls through ETABS with temperature load applied over shell. At various location, spandral section fails in Shear due to temperature and piers (sometime in shear, mostly in flexure).  (See Attached Image)

      Certainly all the problem in Shearwalls are due to temperature. I don't want to increase cross section of spandral or pier at some location just due to temperature load case as it will appears non-uniform with rest of the wall. 

      I have seen stiffness modifier affect distribution of forces and also rigid/semi rigid daiphragm assumption. 

       

      Can anybody guide how to properly design the shear wall with temperature load applied in ETABS or share any similar experience. Thanks in Advance.    
      • 15 replies
  • Recently Browsing   0 members

    No registered users viewing this page.

  • Similar Content

    • By Fatima Al Zahraa Olleik
      Dear fellow engineers,
      In a refugee camp reconstruction, we have the following dilemma:
      First, we have an existing retaining wall, height up to 4.5 meters, thickness ranging from 0.25 to 0.4 m. On the back of the wall we have existing an layer of cyclopean concrete :height up to 4.5, width 3m, and length along the wall.
      A 5 story building is to be built over the cyclopean concrete. This means that the Raft of the building (0.5m thick) will lie directly above the existing wall.
      The question is, what is the calculation required to ensure that this wall will withstand the loads of the raft?
       
       
    • By muneeb1213
      For calculating the bearing capacity of soil (using N values), the equations for mat foundation and single footings is the same or its separate for each??
    • By muneeb1213
      I m designing a 4 storey building on a poorly graded sand with SPN value of 5 and allowable bearing capacity of 0.5 tonn/sq.ft..... for the mat foundation, i provided beams of 18 x 36 and mat thickness as 24 inches ... however the soil pressure are still above safe bearing capacity.. My question is should i assign line spring property to the footing beams or not???
      The area of footing is also increased but the stresses are still high...
    • By Waqas Haider
      From engineering point of view, it is really very amazing to see a complete city builtup in water ways, in a lagoon. How did they make the foundation system of buildings completely all the time underwater? Really interesting article here is. It also explains some modern challanges to the city i.e. flooding due to raised levels of sea and an inteseting solution to this problem.
      https://sites.google.com/site/engineeringvenice/
       

    • By Waqas Haider
      Assalam o alaikum, 
      i m confused whether collectors and chords are only required in Flat plates/slabs or also required in beam slabs? because in beam slab we are having beams at perimeter of every panel and they can act as chords and for diaphragm bending and as collectors at junction of slab to shear wall. Usually, in seismic zone 4, i dont design diaphragm exclusively. i just design it as simple slab and design my beams in SMRF or Dual Frame in etabs. 
      Also i m confused in excerpt from a document stating
      The Special Seismic Load combination is also indirectly identified in Chapter 18, Section 1809, Foundation Construction – Seismic Zones 3 and 4.
      1809.3 Superstructure-to-Foundation Connection. The connection of superstructure elements to
      the foundation shall be adequate to transmit to the foundation the forces for which the elements
      were required to be designed.
      For instance, since Section 2213.5 Column Requirements specifically identifies the Ω0 factor, Section
      1809.3 requires the column-to-foundation connection to be designed for a load combination which includes
      the Ω0 factor.
      What does it mean? In seismic zone 3 or 4, we need to design foundations for special seismic combos ALWAYS or only if we r having discontinuous system? The full document is also attached. Thanks.
       
       
      OmegaFactorDiscussion.pdf
    • By waqar saleem
      Salam
      Dear Sefpians!!
      I have to design a foundation for a 15m high floodlight pole, dia of the pole is 10 inches, pole is welded with the baseplate (provided by manufacturer), how the forces will be transferred to anchors. what forces will be on anchors. how forces will be transferred from anchors to foundation. anchors will be embedded in-situ concrete.
      Regards
    • By israr_sari
      How to  import multilevel raft foundation from etabs to safe.
      main designer has designed it as a raft foundation with a bearing capacity of 150 kn/m2 but after the site development and excavation we found a hard strata that can with stand with 250 kn/m2(as per the soil report). as total depth of raft is 1 m that is too much for 5 storey car parking, i want to modify it with 250 raft overall with inverted panels under column. but i am not able to import that multi level foundation reactions as a one file in Safe. because in etabs u can only export one storey . 
      please give your helpful suggestions.

    • By groszni awesome
      assalamualaikum sepakistan users
      i wanna ask what are the considerations of using this ribraft foundation thing?
      what are the advantages and disadvantages?
      what are some load applied on it?
      how do we design the slab and the beam?
      thank you.

    • By Kasim
      1. We provide beams at plinth level all around the building under the walls. These beams rest directly on ground above lean concrete. Should we also model them in ETabs model???? is this practise correct?
       should we Design it Like normal beams, (More conservative) ?. Or for Reduced moment? (As they are supported along the length) 
      2. During seismic analysis we specify our Range from Base or Basment of The building to the top or from Ground to the top.?
      3. should we include Plinth beams in our latteral force resisting system? 
      thanks. 
       
    • By Fahad Samo
      I am looking for software or a spread sheet to design an eccentric isolated footing. Can anybody help me with that??
  • Recent Discussions

  • Latest Forum and Club Posts

    • @ali7988 hameed.. I think you want to apply partition wall load on floor slab, for this purpose you can simply draw a null/negligible frame element and apply load over it.
    • Sorry, I m not sure what you meant. You don't need to include a member in the model just to add its load. You need to model only those members that are essential for completing the load path (structural members).
    • Looking at the figure, one cannot figure out the complete load path for a particular loading scenario. So, it is not possible to give a specific advice. But, the way these pipes are connected, there be moment due to the eccentricity of connections in addition to axial forces. In addition to axial and flexural stress, shear stresses can also dictate the thickness required for the pipe, if the load path includes these forces.
    • Assalamualaikum,  Im designing a connection a pipe to pipe, between this pipe i have to add a plate to connect the pipe with welds. How can i determine the thickness of the pipe? Do i just design it based on tension load on the pipe? Cause my senior said that theres an eccentricity and i have to design it to resist such loads, but im not sure. Heres the figure of the drawing. Regards Groszni
    • do you calculate the dimension of the stiffner as a tension member by using these load-> required load for stiffener = force load by beam flage - column web resistance ?
    • Please see these topics: http://www.eng-tips.com/viewthread.cfm?qid=347923 http://www.eng-tips.com/viewthread.cfm?qid=1734 Thanks.
    • W/s Imran, It is very hard to say if your FYP would help you in securing a job but one thing that is for sure, is that you will get skills like assessing an existing structure, doing base isolation and information about seismic codes and the response of a building to a seismic event - such skills would help you wherever you go. I am not aware of use of base isolators in Pakistan, there might be sensitive military installations where these are being used but I don't know if the market is really big for that and there is immediate need for people having that experience. But like I said above, you will get a skillset that any structural firm in Pakistan would value provided you do your project correct and develop understanding of what you are doing. Thanks.    
    • Can I model the load of partion load(brick wall load) by modeling a beam with very small dimensions such as 1 cm * cm
    • @UmarMakhzumi.. @Ayesha...Thank You for your concern. Yes we r on the same page . However my interest was only to highlight the fact that pile cap design is not like slab, due to pile spacing criteria and typical patterns, it will behave like a deep beam in almost every structure. However i feel there is no proper technical inputs on this component of structure and engineers follows whatever practices are in their offices. In this regard i would like to add little knowledge as per my experience , that unlike the normal slab, the critical sections for maximum FORCES will also be changed , it needs 5 to 6 special investigation as per the reference handbook mentioned in commentary of ACI.  Regards  
    • @ZOHAIB SATTAR NAGRA..  Applying temperature to vertical elements (Wall) will hardly effect your design, this is my observation.      "It is pertinent to mention that biggest trouble for frames/walls will arise due to the application of temperature loading on slab area".  
×

Important Information

By using this site, you agree to our Terms of Use and Guidelines.