Asad,
It is not necessarily required to extend the seismic analysis's storey range till basement levels as for buildings with several below grade levels supported by basement walls, two stage static analysis procedure is used (ASCE 7-10 Section 12 & UBC97 section 1630.4.2) that consists in distribution of building in flexible upper portion (above basement levels) and rigid lower portion (basement levels), provided the lower portion have a stiffness minimum 10 times greater than upper and time period of whole structure should not exceed 1.1 times of flexible upper portion's period while it is considered as a separate structure.
You can simply check these limitations as,
1, by computing stiffness ratio (EI/L ratios of basement walls + LFRS in rigid lower portion) to the (EI/L ratios of LFRS in flexible upper portion)
2, computing time period of whole structure (Eigen vector) and computing time period of upper portion alone modeled without basement levels.
Having satisfied these, seismic analysis is required to be performed till base of upper portion only & rigid lower portion is required to design only for seismic forces transmitted at the base of flexible upper portion modified by the factor Rupper/Rlower.
In ETABS you have to define "ground level" as bottom storey in analysis storey range and seismic shear imparted on ground level will be automatically transmitted to the levels below through diaphragm action.It will be just required to compute "R" value for lower portion considering it separate and to modify seismic load case's scale factor by Ru/Rl for the design of below grade structure.
In this way the maximum seismic shear will be acting at the ground level not at B4, that will reduce the magnitude of force and could be beneficial in mentioned below grade serviceability issues particularly drift will be considerably reduced (also compute drift using user defined time period obtained from eigen vector analysis see UBC Section 1630.10.3).
As long as below grade torsion is concerned, it is just required to satisfy that Ax (UBC97 Eqn 30-16) should not exceed 3 and required to be noted that amplification of diaphragm eccentricity is of no meaning there since seismic forces are imposed from upper portion and are not calculated & applied separately.
Secondly, load combinations should be inclusive of minimum seismic vertical effects and dynamic load combinations.